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Project Team Introductions
Keegan Kelly, PI

— Heavily involved in prompt fission neutron spectrum (PFNS) measurements at WNR FP15L
at LANSCE with the Chi-Nu experiment

— Pl of LDRD-ECR and ER projects to investigate and develop neutron scattering
measurement techniques

Matthew Devlin, Co-I
— Pl of Chi-Nu experiment
— GEANIE measurements of inelastic scattering and (n,2n) reactions

John O’Donnell, Co-I

— Heavily involved in Chi-Nu PFNS measurement and analysis

— Wrote and developed the Universal Analysis Code (UAC) used for analysis of data from
Chi-Nu and neutron scattering data

Mark Paris, Co-I
— World-leading expert in evaluation of light-ion nuclear data evaluations
— Evaluation results are fed directly into the potential ENDF/B libraries

e Eames Bennett, PD
— Experience in Chi-Nu and neutron scattering measurement and analysis

— One of the POCs for LDRD-funded neutron scattering analysis
‘f\ LA-UR-21-XXXXX 10/26/2021 | 3




Project Motivation: Active Interrogation

Unknown Container

Detector

n-Irradiate sample of interest

Neutron PN

Observe emitted v spectrum  source

y-rays

~-ray production is the common item of interest

Inelastic n scattering cross sections are frequently the strongest
contributors to y-production cross sections

Effectively no information on the correlated n-v distributions

— Not sufficient to just understand the scattering cross sections

n transport is equally important for understanding the results

Measure correlated n-y data to extract ~-emitting inelastic neutron

scattering cross sections on 27Al, 28Si, and 160
‘:\ LA-UR-21-XXXXX 10/26/2021 4



Most of the ~-prod XS is in (n,n’)
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e ~-only measurements typically have poor Ei" resolution
~-only n
e n-only measurements get cross section only (no ~ info)

e Dual n-y measurements are needed for cross section, v production,
and neutron transport

e Sensitive to all n-y producing reactions
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The LANSCE Facility: Pulsed White n Source

Proton o
|sotope Radiography ‘ ¥ eutrons (H)
Hs Sourca Preduction (H]

! Facility (H")
©7% WY prift Tubp 149 eV Side Coupled Linear Accelerator

H- Source Linear
Accaelerator

{inactive, but
proposed as Material
Test Station, H')

e |ujan Target
— Moderated neutron target
— Thermal — ~MeV neutrons
— Proton beam travels down Lujan Target (1L}
— Flight paths perpendicular to p beam

Lujan Center

| 13

VWeapons
Neutron

e WNR Facility Research Facilty .~ {§
Unmoderated tungsten target - -

Different flight path angles to p beam

Can obtain different flux shapes

1.8 us between p pulses

WNR Target 2

WHR Target 4
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Properties of the Liquid Scintillator Array

1

1 Ll 1 1 1
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Liquid Signal Integral (V ps)

e Span 6 = 30—-150° at 15° increments
e Six angles in ¢, ~10% of 4«
e PSD for n-v separation

® ~1 ns time resolution
e Allows for mapping of n-v dist.

10/26/2021 | 7
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Demonstration Measurement: Natural Carbon

M

Outgoing Neutron Energy (MeV)

Incident Neutron Energy (MeV)

® Use t,-t to get Einc
e Use t,-t, to get EJ*
' o Observe v-coincident neutrons, with

target and random coincidence

f backgrounds
‘:: LA-UR-21-XXXXX 10/26/2021 | 9




Random Coincidence Backgrounds Eliminated

e Random coincidence rates derived
form Poisson probabilities for
uncorrelated detection rates / 8500

3000
— true coincidence rate must be low

e Calculate the total probability for:
1. Detecting a vy at time ¢,
2. Not detecting n over coinc. time
tn — by
3. Detecting n at time ¢,,

101 Before Background Subtraction

4000

2500

2000

1500

1000

3000

2500

Outgoing Neutron Energy (MeV)

Coinc. Rate = 7, =r,r,4¢ Energy splitting from
m kinematics at 2000

= b= different detection
Nto angles 1500

1000

with  ~,n = counts

e Works remarkably well here, but

what are the backgrounds?

1O’Donnell, NIMA 805 (2016) 87
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Backgrounds from ~-Anticoincident Neutrons

¢ The elastic scattering 12C(n,n) reaction is a likely source
¢ Do a simple Monte Carlo calculation for this background:

Sample incident neutrons from WNR FP15L flux shape

Calculate E°¥ from sample Ei"¢, convert to TOFs

Vary TOFs according to random ~ timing, recover new Ei"< and £’
Fill histogram with counts = o( Ei"°)

¢ Possible to extract cross sections from this background?...maybe...
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MCNP Simulations of Carbon Data
Data MCNP

Outgoing Neutron Energy (MeV)

Outgoing Neutron Energy (MeV)

0.6
0.5

10
Incident Neutron Energy (MeV) Incident Neutron Energy (MeV)

Chi-Nu experiment analysis relied heavily on MCNP simulations
MCNP can guide n-v detector efficiencies

Number of internal scatters can be investigated

Understanding neutron interactions with the environment is important

% A-UR-21- /
‘. LA-UR-21-XXXXX 10/26/2021 | 12
e



Extract n, v, and Correlated n-~ Distributions
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Corr. n-y Distributions for Wide Range of Ei"¢
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Goal and Expected Al Yield
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e Use vy-coincident n yields to extract ~-production cross sections
¢ [nitially assume level decay branching ratios from each excited state

e Can be used to cross check data ~-anticoincident data, and n-only
MCNP simulations

And now for a couple of interesting analysis details that we hope to

exploit for the analysis of these data
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Obtain 2D n Efficiency from '2C(n,n)~)
Typical treatments of detection efficiency work poorly for neutrons

Need complete description of n interactions with exp. environment
— Especially for smooth distributions (e.g., high level density scattering)

This was handled with MCNP for Chi-Nu PFNS measurements
Could be more accurately done with measurements
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lterative Unfolding to Isolate Excited States

From last week: m

Clearer view of
states in data

Informs treatment
of n response

Clarifies
expected ~ rays

Confirms inelastic
state populations
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Sensitive to All n-~ Producing Reactions

Fe levels are reasonably dense

The liquid scint. time resolution
allows for 5Fe low-lying state
separation

Natural Pt shows inelastic
scattering, (n,2n), and (n,3n)
reactions, with separation

Elastic scattering data also exist
from these measurements

Potential for correlated
measurements of these different
cross sections
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Ex erlmental Setu for Alumlnum Measurement

\ N




Project Timeline

Task FY2022 FY2023 FY2024
-asX Qi Q@ @ Q@ Q1 Q@ Q3 Q4 QI Q@ 03 04

Obtain High-purity Targets
Measurement of 2’Al

v

»
>

Analysis of 2’Al Data
Publication of 27Al Results

Measurement of 160

VIVIV

Analysis of 160 Data
Publication of 160 Results
Measurement of 28Si

A A\ A\ 4

Analysis of 28Si Data
Publication of 2Si Results
Evaluation of ?’Al Data
Evaluation of 1°0 Data

vV

v

A 4

Evaluation of 2Si Data

v

* Proposed milestones are repetitive for each proposed target:
Obtain data from each target near start of each FY

Analyze data during same FY as measurement

Work towards publication near end of FY and start of next FY
Include data in evaluation as they are available (typically before

e Potential for final meas. to use only CLYC detectors may arise
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Other ltems to Discuss

LCP, deliverables, work scope, and milestones

— Discussion of acceptance criteria for milestones?

Leveraging existing and developing detection and sample setups,
as well as analysis techniques developed under LDRD funding
Team consists

— 3 more senior staff members (Co-I's)
— 1 early career scientist (PI)
— 1 postdoc

Technical Readiness Level (TRL)

— Starting: 8/10, system demo, nearing complete analysis path
— Ending: 10/10, system complete and in production use

Reporting requirements

Constraints (beamtime availability)

Risks and opportunities

Communications plan and possible stakeholders
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